Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.976
Filter
1.
Adv Exp Med Biol ; 1447: 191-207, 2024.
Article in English | MEDLINE | ID: mdl-38724794

ABSTRACT

Atopic dermatitis has a substantial impact on sleep, appearance, psychological well-being, and other qualities of life. The visual appearance of lichenification, cheilitis, hyperpigmentation, ichthyosis, and erythema can be socially stigmatizing, and treatment of these symptoms is challenging. In managing pruritus in patients, practitioners should assess and document pruritus through questionnaires at each routine visit. Initially, practitioners should advise patients to employ nonpharmaceutical treatments such as emollients with wet wraps, elimination of triggers, changing scratching habits, and psychological interventions. If these methods of treatment are not successful or if the disease presentation is severe, pharmacological therapies should be employed. This chapter describes the therapeutic ladder for pruritus in atopic dermatitis and discusses each treatment modality in further detail for practitioners to advise their patients.First-line topical pharmaceutical agents include topical glucocorticoids and topical calcineurin inhibitors. Second-line topical agents include coal tar, menthol, capsaicin, or doxepin. After the use of topical agents has been exhausted, primary systemic agents can be applied. These include sedating antihistamines, nonsedating antihistamines, oral glucocorticoids, or cyclosporine A. Finally, neuromodulating or immunomodulating agents can be attempted, including SSRI/SNRIs, TCAs, immunosuppressants, neural modulators, and opioid receptor modulators. Outside of pharmacological treatments, phototherapy has been shown to provide a dramatic improvement of pruritus in atopic dermatitis and can be used at any stage of treatment including as a first-line agent.


Subject(s)
Dermatitis, Atopic , Pruritus , Humans , Antipruritics/therapeutic use , Calcineurin Inhibitors/therapeutic use , Dermatitis, Atopic/therapy , Dermatitis, Atopic/complications , Glucocorticoids/therapeutic use , Histamine Antagonists/therapeutic use , Phototherapy/methods , Pruritus/therapy , Pruritus/etiology , Pruritus/physiopathology , Pruritus/drug therapy
2.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674067

ABSTRACT

Photobiomodulation (PBM) is a procedure that uses light to modulate cellular functions and biological processes. Over the past decades, PBM has gained considerable attention for its potential in various medical applications due to its non-invasive nature and minimal side effects. We conducted a narrative review including articles about photobiomodulation, LED light therapy or low-level laser therapy and their applications on dermatology published over the last 6 years, encompassing research studies, clinical trials, and technological developments. This review highlights the mechanisms of action underlying PBM, including the interaction with cellular chromophores and the activation of intracellular signaling pathways. The evidence from clinical trials and experimental studies to evaluate the efficacy of PBM in clinical practice is summarized with a special emphasis on dermatology. Furthermore, advancements in PBM technology, such as novel light sources and treatment protocols, are discussed in the context of optimizing therapeutic outcomes and improving patient care. This narrative review underscores the promising role of PBM as a non-invasive therapeutic approach with broad clinical applicability. Despite the need for further research to develop standard protocols, PBM holds great potential for addressing a wide range of medical conditions and enhancing patient outcomes in modern healthcare practice.


Subject(s)
Low-Level Light Therapy , Skin , Humans , Low-Level Light Therapy/methods , Skin/radiation effects , Skin/metabolism , Animals , Skin Diseases/radiotherapy , Skin Diseases/therapy , Light , Phototherapy/methods
3.
Int J Biol Macromol ; 267(Pt 2): 131286, 2024 May.
Article in English | MEDLINE | ID: mdl-38583851

ABSTRACT

Polymer-based nanomotors are attracting increasing interest in the biomedical field due to their microscopic size and kinematic properties which support overcoming biological barriers, completing cellular uptake and targeted blasting in limited spaces. However, their applications are limited by the complex viscous physiological environment and lack of sufficient biocompatibility. This manuscript firstly reports a natural melanin nano-missile of MNP@HA-EDA@Urease@AIE PS (MHUA) based on photothermally accelerated urease-driven to achieve chemodrug-free phototherapy. Compared to conventional nano-missiles that only provide driving force, this photothermally accelerated urease-driven nanomotor is independent of chemodrug to maximise biocompatibility, and achieve ideal therapeutic effect through targeted PTT/PDT. In particular, the thermal effect can not only boost the catalytic activity of urease but also achieve ideally anti-tumor effect. In addition, guided by and AIE PS, the nanomotor can generate 1O2 to achieve PDT and be traced in real time serving as an effective fluorescent bio-radar for intracellular self-reporting during cancer treatment. Finally, the targeting ability of MUHA is provided by hyaluronan. Taken together, this MHUA platform provides a simple and effective strategy for target/fluorescence radar detective-guided PTT/PDT combination, and achieves good therapeutic results without chemodrug under thermal accelerated strategy, providing a new idea for the construction of chemodrug-free nanomotor-therapy system.


Subject(s)
Hyaluronic Acid , Melanins , Urease , Humans , Cell Line, Tumor , Decapodiformes , Hyaluronic Acid/chemistry , Melanins/chemistry , Nanoparticles/chemistry , Phototherapy/methods , Urease/chemistry , Urease/metabolism , Animals
4.
Bioorg Med Chem ; 105: 117717, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38614014

ABSTRACT

Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that involves photoimmunotherapy drug injection and NIR light exposure. In NIR-PIT, antibodies are commonly used as target-directed molecules carrying IRDye700DX (IR700). However, antibodies have disadvantages, such as high cost, complex development strategies, and poor tumor penetration. In contrast, peptides have lower production costs, can be easy to chemically synthesize and modify, and can also be used for tumor-targeting like antibodies. In this study, we developed a novel PIT drug using a peptide as the target-directed molecule. Epidermal growth factor receptor (EGFR) was selected as the target, and monovalent and bivalent EGFR-binding peptides were synthesized. The bivalent peptide showed sufficient binding to EGFR-positive cells, and a bivalent peptide-IR700 conjugate with a long linker induced morphological changes in EGFR-positive cells. Additionally, the drug significantly reduced cell viability in vitro in an NIR light-dose- and drug-concentration-dependent manner. These results indicate the feasibility of NIR-PIT in treating cancer using peptide-based drugs.


Subject(s)
Cell Survival , ErbB Receptors , Immunotherapy , Infrared Rays , Peptides , Phototherapy , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Humans , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Structure-Activity Relationship , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis
5.
ACS Nano ; 18(18): 11988-12009, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38652114

ABSTRACT

Periodontitis, a chronic oral disease instigated by bacteria, severely compromises human oral health. The prevailing clinical treatment for periodontitis involves mechanical scraping in conjunction with antibiotics. Phototherapy is employed to rapidly remove the bacteria and achieve periodontitis treatment, effectively circumventing the adverse effects associated with traditional therapies. Constructing 2D/2D van der Waals (VDW) heterojunctions is a key strategy for obtaining excellent photocatalytic activity. Herein, a 2D/2D violet phosphorus (VP)/Ti3C2 VDW heterojunction is designed using an interfacial engineering strategy. By constructing an electron transport "bridge" (P-Ti bond) at the heterogeneous interface as an effective transfer channel for photogenerated carriers, a compact monolithic structure between the VP and Ti3C2 phases is formed, and the spatial barrier for electron transfer at the interface is eliminated. Meanwhile, the strong directional built-in electric field induced by the intensive electron-coupling effect at the heterogeneous interface served as an internal driving force, which greatly accelerates the exciton dissociation and charge transfer in the photocatalytic process. These excited photogenerated electrons and holes are trapped by O2 and H2O on the surfaces of Ti3C2 and VP, respectively, and are subsequently catalytically converted to antibacterial reactive oxygen species (ROS). The VP/Ti3C2 VDW heterojunction eradicated 97.5% and 98.48% of Staphylococcus aureus and Escherichia coli, respectively, by photocatalytic and photothermal effects under visible light for 10 min. The VP/Ti3C2 nanoperiodontal dressing ointment effectively attenuated inflammatory response, reduced alveolar bone resorption, and promoted periodontal soft and hard tissue repair. Its periodontitis therapeutic effect outperforms the clinically used Periocline.


Subject(s)
Periodontitis , Phosphorus , Titanium , Periodontitis/microbiology , Periodontitis/therapy , Phosphorus/chemistry , Titanium/chemistry , Phototherapy , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Humans , Staphylococcus aureus/drug effects , Escherichia coli , Electricity , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/chemistry , Surface Properties , Animals , Electron Transport , Microbial Sensitivity Tests
6.
Acta Derm Venereol ; 104: adv39927, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629891

ABSTRACT

Narrow-band TL-01 ultraviolet B phototherapy (TL-01) is an effective and widely used treatment for many skin diseases. The purpose of the investigation was to assess the risk of skin cancers in patients treated with TL-01 phototherapy who have not received any other phototherapy modalities. This cohort study included 4,815 TL-01 treated patients in Finland with psoriasis or atopic dermatitis. Clinical information was collected from the hospital records and linked with Finnish Cancer Registry data. The follow-up started from the first TL-01 treatment and the mean follow-up time was 8.4 years. Standardized incidence ratios were calculated for basal cell carcinoma, cutaneous melanoma, and squamous cell carcinoma. The standardized incidence ratio for basal cell carcinoma was 2.5 (95% confidence interval 1.8-3.5), for cutaneous melanoma 4.0 (95% confidence interval 2.1-6.8) and for squamous cell carcinoma 3.7 (95% confidence interval 1.7-7.0). For basal cell carcinoma and squamous cell carcinoma, the standardized incidence ratios remained similar during the whole follow-up time while the standardized incidence ratio for cutaneous melanoma was markedly higher during the first 5 years of follow-up. In conclusion, an increased incidence of skin cancers was observed among TL-01 treated patients. It should be confirmed in the future whether the skin cancer risk of TL-01 phototherapy will remain high in a longer follow-up.


Subject(s)
Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Melanoma , Psoriasis , Skin Neoplasms , Ultraviolet Therapy , Humans , Skin Neoplasms/epidemiology , Skin Neoplasms/etiology , Melanoma/epidemiology , Melanoma/complications , Cohort Studies , Phototherapy/adverse effects , Ultraviolet Therapy/adverse effects , Psoriasis/drug therapy , Carcinoma, Squamous Cell/epidemiology , Carcinoma, Squamous Cell/therapy , Carcinoma, Basal Cell/epidemiology , Carcinoma, Basal Cell/therapy
7.
Colloids Surf B Biointerfaces ; 238: 113921, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631280

ABSTRACT

Tumor microenvironment (TME)-responsive size-changeable and biodegradable nanoplatforms for multimodal therapy possess huge advantages in anti-tumor therapy. Hence, we developed a hyaluronic acid (HA) modified CuS/MnO2 nanosheets (HCMNs) as a multifunctional nanoplatform for synergistic chemodynamic therapy (CDT)/photothermal therapy (PTT)/photodynamic therapy (PDT). The prepared HCMNs exhibited significant NIR light absorption and photothermal conversion efficiency because of the densely deposited ultra-small sized CuS nanoparticles on the surface of MnO2 nanosheet. They could precisely target the tumor cells and rapidly decomposed into small sized nanostructures in the TME, and then efficiently promote intracellular ROS generation through a series of cascade reactions. Moreover, the local temperature elevation induced by photothermal effect also promote the PDT based on CuS nanoparticles and the Fenton-like reaction of Mn2+, thereby enhancing the therapeutic efficiency. Furthermore, the T1-weighted magnetic resonance (MR) imaging was significantly enhanced by the abundant Mn2+ ions from the decomposition process of HCMNs. In addition, the CDT/PTT/PDT synergistic therapy using a single NIR light source exhibited considerable anti-tumor effect via in vitro cell test. Therefore, the developed HCMNs will provide great potential for MR imaging and multimodal synergistic cancer therapy.


Subject(s)
Copper , Hyaluronic Acid , Magnetic Resonance Imaging , Manganese Compounds , Oxides , Photochemotherapy , Tumor Microenvironment , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Tumor Microenvironment/drug effects , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Oxides/chemistry , Oxides/pharmacology , Humans , Copper/chemistry , Copper/pharmacology , Particle Size , Nanostructures/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Phototherapy , Nanoparticles/chemistry , Cell Survival/drug effects , Surface Properties , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Drug Screening Assays, Antitumor , Animals
8.
Biomater Sci ; 12(10): 2480-2503, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38592730

ABSTRACT

Prostate cancer (PCa) is a leading cause of cancer-related death in men, and most PCa patients treated with androgen deprivation therapy will progress to metastatic castration-resistant prostate cancer (mCRPC) due to the lack of efficient treatment. Recently, lots of research indicated that photothermal therapy (PTT) was a promising alternative that provided an accurate and efficient prostate cancer therapy. A photothermic agent (PTA) is a basic component of PPT and is divided into organic and inorganic PTAs. Besides, the combination of PTT and other therapies, such as photodynamic therapy (PDT), immunotherapy (IT), chemotherapy (CT), etc., provides an more efficient strategy for PCa therapy. Here, we introduce basic information about PTT and summarize the PTT treatment strategies for prostate cancer. Based on recent works, we think the combination of PPT and other therapies provides a novel possibility for PCa, especially CRPC clinical treatment.


Subject(s)
Photothermal Therapy , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/therapy , Prostatic Neoplasms/pathology , Animals , Photochemotherapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Immunotherapy , Phototherapy/methods
9.
Int J Mol Sci ; 25(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38612911

ABSTRACT

Cancer stem cells (CSCs) represent a subpopulation within tumors that promote cancer progression, metastasis, and recurrence due to their self-renewal capacity and resistance to conventional therapies. CSC-specific markers and signaling pathways highly active in CSCs have emerged as a promising strategy for improving patient outcomes. This review provides a comprehensive overview of the therapeutic targets associated with CSCs of solid tumors across various cancer types, including key molecular markers aldehyde dehydrogenases, CD44, epithelial cellular adhesion molecule, and CD133 and signaling pathways such as Wnt/ß-catenin, Notch, and Sonic Hedgehog. We discuss a wide array of therapeutic modalities ranging from targeted antibodies, small molecule inhibitors, and near-infrared photoimmunotherapy to advanced genetic approaches like RNA interference, CRISPR/Cas9 technology, aptamers, antisense oligonucleotides, chimeric antigen receptor (CAR) T cells, CAR natural killer cells, bispecific T cell engagers, immunotoxins, drug-antibody conjugates, therapeutic peptides, and dendritic cell vaccines. This review spans developments from preclinical investigations to ongoing clinical trials, highlighting the innovative targeting strategies that have been informed by CSC-associated pathways and molecules to overcome therapeutic resistance. We aim to provide insights into the potential of these therapies to revolutionize cancer treatment, underscoring the critical need for a multi-faceted approach in the battle against cancer. This comprehensive analysis demonstrates how advances made in the CSC field have informed significant developments in novel targeted therapeutic approaches, with the ultimate goal of achieving more effective and durable responses in cancer patients.


Subject(s)
Hedgehog Proteins , Neoplasms , Humans , Neoplasms/therapy , Immunotherapy , Neoplastic Stem Cells , Phototherapy
10.
Anticancer Res ; 44(5): 1837-1844, 2024 May.
Article in English | MEDLINE | ID: mdl-38677753

ABSTRACT

BACKGROUND/AIM: Although there are curative treatment options for non-muscle-invasive bladder cancer, the recurrence of this tumor is high. Therefore, novel targeted therapies are needed for the complete removal of bladder cancer cells in stages of localized disease, in order to avoid local recurrence, to spare bladder cancer patients from stressful and expensive treatment procedures and to increase their quality of life and life expectancy. This study tested a new approach for the photoimmunotherapy (PIT) of bladder cancer. MATERIALS AND METHODS: We generated a cysteine modified recombinant version of the antibody cetuximab targeting the epidermal growth factor receptor (EGFR) on the surface of bladder cancer cells. Then, we coupled the novel photoactivatable phthalocyanine dye WB692-CB1 via a maleimide linker to the free cysteines of the antibody. PIT was performed by incubating bladder cancer cells with the antibody dye conjugate followed by irradiation with visible red light. RESULTS: The conjugate was able to induce specific cytotoxicity in EGFR-positive bladder cancer cells in a light dose-dependent manner. Enhanced cytotoxicity in RT112 bladder cancer cells was evoked by addition of a second antibody dye conjugate targeting HER2 or by repeated cycles of PIT. CONCLUSION: Our new antibody dye conjugate targeting EGFR-expressing bladder cancer cells is a promising candidate for the future PIT of bladder cancer patients.


Subject(s)
ErbB Receptors , Immunoconjugates , Immunotherapy , Receptor, ErbB-2 , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , ErbB Receptors/immunology , ErbB Receptors/antagonists & inhibitors , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Immunotherapy/methods , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Cell Line, Tumor , Cetuximab/pharmacology , Cetuximab/therapeutic use , Cetuximab/chemistry , Phototherapy/methods
11.
J Nanobiotechnology ; 22(1): 180, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622591

ABSTRACT

To address the limitations of traditional photothermal therapy (PTT)/ photodynamic therapy (PDT) and real-time cancer metastasis detection, a pH-responsive nanoplatform (NP) with dual-modality imaging capability was rationally designed. Herein, 1 H,1 H-undecafluorohexylamine (PFC), served as both an oxygen carrier and a 19F magnetic resonance imaging (MRI) probe, and photosensitizer indocyanine green (ICG) were grafted onto the pH-responsive peptide hexahistidine (H6) to form H6-PFC-ICG (HPI). Subsequently, the heat shock protein 90 inhibitor, gambogic acid (GA), was incorporated into hyaluronic acid (HA) modified HPI (HHPI), yielding the ultimate HHPI@GA NPs. Upon self-assembly, HHPI@GA NPs passively accumulated in tumor tissues, facilitating oxygen release and HA-mediated cell uptake. Once phagocytosed by lysosomes, protonation of H6 was triggered due to the low pH, resulting in the release of GA. With near-infrared laser irradiation, GA-mediated decreased HSP90 expression and PFC-mediated increased ROS generation amplified the PTT/PDT effect of HHPI@GA, leading to excellent in vitro and in vivo anticancer efficacies. Additionally, the fluorescence and 19F MRI dual-imaging capabilities of HHPI@GA NPs enabled effective real-time primary cancer and lung metastasis monitoring. This work offers a novel approach for enhanced cancer phototherapy, as well as precise cancer diagnosis.


Subject(s)
Lung Neoplasms , Nanoparticles , Photochemotherapy , Humans , Phototherapy/methods , Indocyanine Green , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/therapy , Oxygen , Hydrogen-Ion Concentration , Cell Line, Tumor
13.
Trials ; 25(1): 246, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594725

ABSTRACT

BACKGROUND: Insomnia and eveningness are common and often comorbid conditions in youths. While cognitive behavioural therapy for insomnia (CBT-I) has been suggested as a promising intervention, it remains unclear whether it is sufficient to also address circadian issues in youths. In addition, despite that light has been shown to be effective in phase-shifting one's circadian rhythm, there has been limited data on the effects of bright light therapy and its combination with CBT-I on sleep and circadian outcomes in youths. The current protocol outlines a randomised controlled trial that examines the efficacy of CBT-I and CBT-I plus bright light therapy (BLT) in reducing insomnia severity, improving mood symptoms and daytime functioning (e.g. sleepiness, fatigue, cognitive function), and improving subjective and objective sleep and circadian measures compared to a waitlist control group. METHODS: We will carry out a randomised controlled trial (RCT) with 150 youths aged 12-24 who meet the criteria of insomnia and eveningness. Participants will be randomised into one of three groups: CBT-I with bright light therapy, CBT-I with placebo light, and waitlist control. Six sessions of CBT-I will be delivered in a group format, while participants will be currently asked to use a portable light device for 30 min daily immediately after awakening throughout the intervention period for bright light therapy. The CBT-I with light therapy group will receive bright constant green light (506 lx) while the CBT-I with placebo light group will receive the modified light device with the LEDs emitting less than 10 lx. All participants will be assessed at baseline and post-treatment, while the two active treatment groups will be additionally followed up at 1 month and 6 months post-intervention. The primary outcome will be insomnia severity, as measured by the Insomnia Severity Index. Secondary outcomes include self-reported mood, circadian, daytime functioning, and quality of life measures, as well as sleep parameters derived from actigraphy and sleep diary and neurocognitive assessments. Objective measures of the circadian phase using dim-light melatonin onset assessment and sleep parameters using polysomnography will also be included as the secondary outcomes. DISCUSSION: This study will be the first RCT to directly compare the effects of CBT-I and BLT in youths with insomnia and eveningness. Findings from the study will provide evidence to inform the clinical management of insomnia problems and eveningness in youths. TRIAL REGISTRATION: ClinicalTrials.gov NCT04256915. Registered on 5 February 2020.


Subject(s)
Cognitive Behavioral Therapy , Sleep Disorders, Circadian Rhythm , Sleep Initiation and Maintenance Disorders , Humans , Adolescent , Sleep Initiation and Maintenance Disorders/diagnosis , Sleep Initiation and Maintenance Disorders/therapy , Sleep , Sleep Disorders, Circadian Rhythm/therapy , Phototherapy/methods , Cognitive Behavioral Therapy/methods , Treatment Outcome , Randomized Controlled Trials as Topic
14.
J Nanobiotechnology ; 22(1): 163, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600506

ABSTRACT

Photothermal immunotherapy is regarded as the ideal cancer therapeutic modality to against malignant solid tumors; however, its therapeutic benefits are often modest and require improvement. In this study, a thermoresponsive nanoparticle (BTN@LND) composed of a photothermal agent (PTA) and pyroptosis inducer (lonidamine) were developed to enhance immunotherapy applications. Specifically, our "two-step" donor engineering strategy produced the strong NIR-II-absorbing organic small-molecule PTA (BTN) that exhibited high NIR-II photothermal performance (ε1064 = 1.51 × 104 M-1 cm-1, η = 75.8%), and this facilitates the diagnosis and treatment of deep tumor tissue. Moreover, the fabricated thermally responsive lipid nanoplatform based on BTN efficiently delivered lonidamine to the tumor site and achieved spatiotemporal release triggered by the NIR-II photothermal effect. In vitro and in vivo experiments demonstrated that the NIR-II photothermal therapy (PTT)-mediated on-demand release of cargo effectively faciliated tumor cell pyroptosis, thereby intensifying the immunogenic cell death (ICD) process to promote antitumor immunotherapy. As a result, this intelligent component bearing photothermal and chemotherapy can maximally suppress the growth of tumors, thus providing a promising approach for pyroptosis/NIR-II PTT synergistic therapy against tumors.


Subject(s)
Indazoles , Nanoparticles , Neoplasms , Humans , Phototherapy , Pyroptosis , Neoplasms/drug therapy , Immunotherapy , Cell Line, Tumor
15.
Acta Derm Venereol ; 104: adv35215, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567914

ABSTRACT

Phototherapy is an efficient therapy for a variety of skin diseases. Various drugs can cause photosensitivity and impact tolerability of phototherapy. The tolerability was investigated of narrowband ultraviolet-B 311 nm therapy in dependence on the underlying disease and long-term co-medication. A total of 534 narrowband ultraviolet-B therapy courses were examined. Compared with psoriasis, adverse events were observed more frequently in eczematous diseases and, in some cases, other indications. About two-thirds of all courses were carried out in patients taking at least one photosensitising drug, according to the summaries of product characteristics. Phototherapy was more frequently associated with adverse events when medication was taken concomitantly. When considering the tolerability of phototherapy in dependence on individual substances or drug classes, no statistically significant result was shown after adjustment.


Subject(s)
Photosensitivity Disorders , Psoriasis , Ultraviolet Therapy , Humans , Ultraviolet Therapy/adverse effects , Phototherapy , Psoriasis/therapy , Psoriasis/drug therapy , Treatment Outcome
16.
Nano Lett ; 24(15): 4649-4657, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38572971

ABSTRACT

Deep-seated bacterial infections (DBIs) are stubborn and deeply penetrate tissues. Eliminating deep-seated bacteria and promoting tissue regeneration remain great challenges. Here, a novel radical-containing hydrogel (SFT-B Gel) cross-linked by a chaotropic effect was designed for the sensing of DBIs and near-infrared photothermal therapy (NIR-II PTT). A silk fibroin solution stained with 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tris(1-methylpyridin-1-ium) (TPT3+) was employed as the backbone, which could be cross-linked by a closo-dodecaborate cluster (B12H122-) through a chaotropic effect to form the SFT-B Gel. More interestingly, the SFT-B Gel exhibited the ability to sense DBIs, which could generate a TPT2+• radical with obvious color changes in the presence of bacteria. The radical-containing SFT-B Gel (SFT-B★ Gel) possessed strong NIR-II absorption and a remarkable photothermal effect, thus demonstrating excellent NIR-II PTT antibacterial activity for the treatment of DBIs. This work provides a new approach for the construction of intelligent hydrogels with unique properties using a chaotropic effect.


Subject(s)
Phototherapy , Photothermal Therapy , Hydrogels/pharmacology
17.
Photodermatol Photoimmunol Photomed ; 40(3): e12968, 2024 May.
Article in English | MEDLINE | ID: mdl-38632705

ABSTRACT

BACKGROUND: Vitiligo is characterized by depigmented patches resulting from loss of melanocytes. Phototherapy has emerged as a prominent treatment option for vitiligo, utilizing various light modalities to induce disease stability and repigmentation. AIMS AND METHODS: This narrative review aims to explore the clinical applications and molecular mechanisms of phototherapy in vitiligo. RESULTS AND DISCUSSION: The review evaluates existing literature on phototherapy for vitiligo, analyzing studies on hospital-based and home-based phototherapy, as well as outcomes related to stabilization and repigmentation. Narrowband ultra-violet B, that is, NBUVB remains the most commonly employed, studied and effective phototherapy modality for vitiligo. Special attention is given to assessing different types of lamps, dosimetry, published guidelines, and the utilization of targeted phototherapy modalities. Additionally, the integration of phototherapy with other treatment modalities, including its use as a depigmenting therapy in generalized/universal vitiligo, is discussed. Screening for anti-nuclear antibodies and tailoring approaches for non-photo-adapters are also examined. CONCLUSION: In conclusion, this review provides a comprehensive overview of phototherapy for vitiligo treatment. It underscores the evolving landscape of phototherapy and offers insights into optimizing therapeutic outcomes and addressing the challenges ahead. By integrating clinical evidence with molecular understanding, phototherapy emerges as a valuable therapeutic option for managing vitiligo, with potential for further advancements in the field.


Subject(s)
Ultraviolet Therapy , Vitiligo , Humans , Vitiligo/therapy , Ultraviolet Therapy/methods , Phototherapy , Melanocytes , Treatment Outcome
18.
Photodermatol Photoimmunol Photomed ; 40(3): e12963, 2024 May.
Article in English | MEDLINE | ID: mdl-38616359

Subject(s)
Phototherapy , Humans
19.
Photodermatol Photoimmunol Photomed ; 40(3): e12964, 2024 May.
Article in English | MEDLINE | ID: mdl-38616405

ABSTRACT

INTRODUCTION: Pityriasis lichenoides chronica is the chronic end of the spectrum of pityriasis lichenoides which have several forms of papulosuamous conditions. Several treatments obtained complete clearance of the condition including phototherapy and specifically narrow band ultraviolet B. The Excimer light 308 is a monochromatic light that acts within the ultraviolet B wavelength and used as a targeted phototherapy in several skin conditions. METHODS: Thirty-four patients with histopathologically diagnosed pityriasis lichenoides chronica underwent treatment with biweekly sessions of excimer light 308 nm. Treatment continued until complete clearance was obtained or to a maximum of 48 sessions (24 weeks). RESULTS: Thirty-one patients obtained complete clearance with no recurrence till the end of the study period, two patients had partial response and only one patient showed poor response to treatment. CONCLUSION: Excimer light can be a safe and effective treatment of pityriasis lichinoides chronica in different ages and genders.


Subject(s)
Pityriasis Lichenoides , Humans , Female , Male , Pityriasis Lichenoides/radiotherapy , Phototherapy , Kinetics
20.
ACS Appl Mater Interfaces ; 16(15): 18252-18267, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38581365

ABSTRACT

Nitric oxide (NO) intervenes, that is, a potential treatment strategy, and has attracted wide attention in the field of tumor therapy. However, the therapeutic effect of NO is still poor, due to its short half-life and instability. Therapeutic concentration ranges of NO should be delivered to the target tissue sites, cell, and even subcellular organelles and to control NO generation. Mitochondria have been considered a major target in cancer therapy for their essential roles in cancer cell metabolism and apoptosis. In this study, mesoporous silicon-coated gold nanorods encapsulated with a mitochondria targeted and the thermosensitive lipid layer (AuNR@MSN-lipid-DOX) served as the carrier to load NO prodrug (BNN6) to build the near-infrared-triggered synergetic photothermal NO-chemotherapy platform (AuNR@MSN(BNN6)-lipid-DOX). The core of AuNR@MSN exhibited excellent photothermal conversion capability and high loading efficiency in terms of BNN6, reaching a high value of 220 mg/g (w/w), which achieved near-infrared-triggered precise release of NO. The outer biocompatible lipid layer, comprising thermosensitive phospholipid DPPC and mitochondrial-targeted DSPE-PEG2000-DOX, guided the whole nanoparticle to the mitochondria of 4T1 cells observed through confocal microscopy. In the mitochondria, the nanoparticles increased the local temperature over 42 °C under NIR irradiation, and a high NO concentration from BNN6 detected by the NO probe and DSPE-PEG2000-DOX significantly inhibited 4T1 cancer cells in vitro and in vivo under the synergetic photothermal therapy (PTT)-NO therapy-chemotherapy modes. The built NIR-triggered combination therapy nanoplatform can serve as a strategy for multimodal collaboration.


Subject(s)
Drug Delivery Systems , Nanoparticles , Phosphatidylethanolamines , Polyethylene Glycols , Doxorubicin/pharmacology , Nitric Oxide , Phototherapy , Nanoparticles/therapeutic use , Mitochondria , Lipids , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...